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Summary

Although droughts and floods produce short-term
fluctuations in the elevation of Great Salt Lake, water
diversions since the arrival of 19" Century pioneers
represent a persistent reduction in water supply to the
lake, decreasing its elevation by 11 feet and exposing
much of the lake bed. As Utah moves forward, we need
to be aware of the impacts of lowered lake levels and
make decisions that serve the interests of all Utahns. In
particular, proposals to further develop the water
supply of the Great Salt Lake should carefully consider
potential impacts to the health of the lake and examine
the tradeoffs. There are no water rights to protect
Great Salt Lake, so water development currently
focuses solely on whether there is water upstream to
divert. If future water projects reduce the supply of
water to the lake, its level will continue to drop.!
Although water conservation has reduced urban per
capita use by 18 percent, overall municipal water use
has increased by 5 percent because of our growing
population.? To significantly reduce water use, a
balanced conservation ethic needs to consider all uses,
including agriculture, which consumes 63 percent of
the water in the Great Salt Lake Basin.

Increased awareness of how water use is lowering
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Figure 1. Great Salt Lake showing its major bays and
the relative contribution (%) of each of the major river
inflows. The white line shows the lake margin at its
average natural elevation of 4,207 feet and the July
2015 NASA photograph shows the lake at near record-
low levels, exposing half of the lake bed.

Great Salt Lake will help us avoid the fate of other salt lakes such as the Aral Sea in Central Asia or California’s

Owens Lake, both of which have been desiccated and now cause severe environmental problems. We must look

beyond the next few decades and decide how we value the lake for future generations. Lower lake levels will

increase dust pollution and related human health impacts, and reduce industrial and environmental function of

Great Salt Lake. We must be willing to make decisions now that preserve Great Salt Lake’s benefits and mitigate

its negative impacts into the coming centuries.



Introduction

Utah’s Great Salt Lake is immensely valuable as an environmental, cultural, and economic resource. A 2012
analysis by Bioeconomics® estimated the economic value of the lake at $1.32 billion per year for mineral
extraction, brine shrimp cyst production, and recreation. The abundant food and wetlands of the lake attract 3
million shorebirds, as many as 1.7 million eared grebes, and hundreds of thousands of waterfowl during spring
and fall migrations. Because of this, it has been designated as a Western Hemisphere Shorebird Reserve Network
Site. Notably, the lake is the namesake of Utah’s capital city, which underscores its cultural significance.

Great Salt Lake lies in a terminal basin (Figure 1). This means water flowing into it only leaves by evaporation.
Freshwater lakes have river outflows, but not Great Salt Lake. Its tributaries bring trace amounts of salt, which
is left behind when water evaporates. The concentrated salts, including sodium, chloride, potassium, sulfate,
magnesium and others, provide a valuable resource for mineral extraction companies. Because most of the lake
is too salty for fish to survive, millions of migratory birds are the dominant predators of the abundant brine
shrimp and brine flies that can tolerate the salty waters in the main lake. Bear River Bay and Farmington Bay,
which receive freshwater inflows and are less salty, harbor an even greater diversity of insects, crustaceans and
fish which are also important prey for the bird community.

Since the lake is in a closed basin, it naturally rises with greater water supply during wet periods and falls during
droughts. On top of this natural pattern, water supply to the lake has decreased over time as more and more of
it is consumed for agricultural, industrial and urban uses. As water supply decreases, the lake level falls. There
are compensating factors that can slow shrinkage of the lake when water supply is reduced. First, as the
elevation declines, the size of the lake decreases, and thus, there is less evaporative surface area. Second, as the
lake shrinks, salts become more concentrated, which further reduces evaporation.® These processes slow, but
do not stop, the decrease in lake elevation when water supply decreases. The lake’s elevation and salinity
equilibrate to the amount of water flowing into it from rivers, rainwater and groundwater. For example, if there
was a 25 percent decrease in streamflow to the lake, its elevation would slowly drop and, after 15 years,
equilibrate at an elevation about 2.2 feet lower.*

Effects of water withdrawals on Great Salt Lake levels

Although fluctuations in rainfall and river flow cause the lake level to rise and fall, there has been no significant
long-term change in precipitation® and water supply® from mountain tributaries since the pioneers arrived in
1847 (Figure 2A). In contrast, water development and river diversions over more than a century and a half have
produced a persistent reduction in water supply to the lake (Figure 2B). Some of the diverted water is lost via
evaporation from agricultural fields, urban landscaping, and industrial activity, including losses from salt ponds.
These reduced stream flows have been offset by eight percent with imported water from the Colorado River
Basin through the Central Utah Project, as well as return flows from upstream diversions. Overall, however,
consumptive water use has reduced net river inflow to the lake by 39 percent over the past 150 years.” This
consumptive water use causes the Great Salt Lake to shrink (Figure 2C, red line). Although wet periods like those
in the mid-1980s and the current drought cause water supply and lake levels to fluctuate, the lake level has
persistently declined since the pioneers arrived.® This contrasts strikingly with the constant long-term average
of precipitation and river flow in the upper watersheds noted above and in Figure 2A.
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This decline in lake level is more
obvious when compared against a
hydrological model® that estimates
lake elevation if no consumptive use of
water occurred (Figure 2C, blue line).
This analysis demonstrates that
without consumptive water use, the
long-term trend in the lake level since
1847 would have been flat with a
natural mean elevation of 4,207 feet.
Put another way, the lake is now 11
feet lower than it would have been if
we were not diverting water for
agricultural, industrial, urban and
impounded wetland uses. This 11-foot
elevation drop has reduced the volume
Table 1

shows how much each of the various

of the lake by 48 percent.

uses of water have contributed to the
decrease in lake level.

Any future development of water will
cause the lake to drop more. For
example, the Utah Division of Water
water

Resources estimates that

consumption associated with the

proposed Bear River Development
Project’® would decrease the level of
Great Salt Lake approximately 8.5
inches. This would expose about
another 30 square miles of lake bed.!
The logic is straightforward: if less
water is delivered to the lake, the lake
level must drop. This is an inevitable
consequence of ever increasing water

consumption.

Impacts of lowered lake levels

Dust & health—Water diversions and drought have reduced lake area from around 1,600 square miles when the
pioneers arrived to 1,050 square miles in 2015. The exposed 550 square miles of lake bed increases the potential
for locally severe dust storms. Figure 1 shows lake area at an elevation of 4,207 feet, the 1847-2015 average
estimated lake level if there had been no diversions (Figure 2C), and the level in July 2015 as the lake approached
its lowest recorded level. At the current lake elevation, 48% of the lake bed is exposed compared to when the

lake is at 4,207 feet.
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absence of consumptive water uses. Averaged over the last 10 years,
water use has lowered the lake 11 feet and decreased its volume by

48 percent.
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Decreased lake elevation, however, affects ) )
Table 1. Types of human water consumption (depletions) and

their influence on decreasing the level of the Great Salt Lake
Bear River and Farmington Bays are (Source, Utah Division of Water Resources, 2016).

particularly impacted, and at the current

various bays of the lake differently. Shallow

Median estimated decrease

f
Source and percent of water use in lake level (Total = 11.1 t)

lake level, more than three-quarters of their

lake beds are exposed, making them
potential sources of dust that influence

. Agricultural (63%) 7.0 feet
Wasatch Front communities.
Mineral extraction—salt ponds (13%) 1.4 feet
The increase in exposed lake bed from Municipal & industrial (11%) 1.3 feet
water withdrawals and drought can have Impounded wetlands (10%) 1.1 feet
important consequences for human health.
Reservoir evaporation (3%) 0.3 feet

Airborne mineral dust increases hospital

visits for respiratory and cardiovascular
diseases’?, and increases rates of death'®>. Dust exposure also increases the prevalence of asthma, inhibits
immune response, and results in cellular and DNA damage, lung infection, and respiratory disease. Additionally,
the dust can transport bacteria and microorganisms that negatively impact human and ecosystem health.*
When Great Salt Lake is at its mean natural elevation (4,207 feet), it produces only small amounts of dust due
to the limited area of exposed dry lake bed. However, as exposed lake bed increases, more dust is produced
from this area, causing dust storms such as seen in Figure 3. Increased dust production following lake
desiccation has occurred in numerous other closed basins nationally and internationally, including Owens Lake
in California®®, Lake Urmia in Iran, and the Aral Sea in Kazakhstan and Uzbekistan. In each case the primary cause
of rapid desiccation has been increased water withdrawals for agriculture and other consumptive uses. For
example, diversions from the Owens River for the city of Los Angeles desiccated Owens Lake by 1926, causing it
to become one of the largest sources of particulate matter (PM10) pollution in the country.!” This dust affects
about 40,000 permanent residents in the region,

causing asthma and other health problems. As a
consequence, since 2000, the City of Los Angeles
has spent $1.3 billion for dust mitigation'® and by
2018 will have spent more than $2.1 billion®.
Because most of Utah’s population is located near
Great Salt Lake, health impacts from exposed lake
bed could potentially affect even more people.
Ongoing studies are estimating the magnitude of
the dust impact from the exposed Great Salt Lake
shoreline on Wasatch Front communities.?’ Other

researchers are investigating how dust increases
snowmelt rates and decreases water runoff from
Figure 3. Dust storm coming off the Great Salt Lake viewed high-elevation mountains.*

from Olympus Cove looking NW towards Salt Lake City. This

August 5, 2015 dust storm was caused by a large Mineral Extraction Industry—The exposed lake bed
thunderstorm with 40-50 mph winds at the north end of also creates problems for the mineral extraction
the Great Salt Lake which lifted dust off the dry lake shore. industry located around the periphery of the lake.
Webcam image, 6:35 PM. Low lake levels have a positive effect of



concentrating minerals, which facilitates their extraction. However, as lake level drops, it becomes increasingly
difficult and expensive to deliver brine from the lake to the salt ponds and processing plants. For example, in
2014 Morton Salt was required to dig a five-mile long canal to access the lake’s water, and some companies in
Gunnison Bay find that it is now cost-prohibitive to pump brine to their distant facilities.

Recreation—Similar problems are experienced by the Great Salt Lake boating community. At the current low
lake level, the marina on Antelope Island is not functional for most boats, and the larger Great Salt Lake Marina
is currently being dredged at a cost of more than $1.5 million to allow access to the lake. Additional water losses
would cause even more severe problems. Recreational use for hunting in Bear River and Farmington Bays is also
limited by a shrinking and saltier water body. Altogether, recreation in and around Great Salt Lake contributes
about $135 million to Utah’s economy.?
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salinity level in Gilbert Bay is currently 16 optimal salinities (8-12%) for brine shrimp. For reference, seawater
percent, considerably above the salinity is 3.5%.

optimum for brine shrimp. Nevertheless,

the commercial harvest of brine shrimp cysts is still profitable. However, if diversions and drought continue and
salinities rise above 20 percent, brine shrimp production is estimated to be reduced to less than 10 percent of
optimal.?® This will severely reduce the $57 million commercial brine shrimp harvest and provide less forage for

birds.

Avian usage—Reduced lake levels influence the enormous bird populations that rely on Great Salt Lake for
migration and reproduction; species as diverse as American avocets, mallards, swans, and pelicans are all
negatively impacted by low lake levels.?* Mostimportant, critical nesting sites in the shallow areas of Farmington
and Bear River Bays nearly disappear at low lake levels (Figure 1). These bays are essentially fresh-water
estuaries that produce abundant food resources, and support a high density and diversity of birds.2> When these
estuaries shrink, this premier waterfowl production area and its associated $70 million waterfowl hunting
industry is threatened.?® Secondly, increases in salinity in Gilbert Bay, the largest portion of the lake, will
decrease food available for those birds, such as grebes, shorebirds, and gulls that feed on brine shrimp and brine
flies (Figure 4). Additionally, further water diversions could result in more frequent water shortages for the vital
freshwater bird sanctuaries such as the Bear River Migratory Bird Refuge that line much of the eastern shore of
the lake.?” The problem of decreasing habitat for birds at Great Salt Lake is exacerbated because many other
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western saline lakes that host birds are similarly affected by water diversions and drought: California’s Salton
Sea®, Mono Lake?, and Owens Lake®°, as well as Oregon’s Abert Lake3! are stark examples of environmental
harm to saline lakes when water is depleted by consumptive uses.

Conclusion

Figure 5 summarizes how water use and climatic fluctuations influence Great Salt Lake. Climate fluctuations,
such as the flooding in the mid-1980s and the current drought, cause flooding and drying cycles with 5-30 year
intervals®. Consumptive water uses, however, produce a persistent decrease in water supply to the lake and
thus, lake levels (Figure 2). Since the pioneers arrived in 1847, there has been no significant long-term trend in
precipitation or streamflow out of the mountains (Figure 2A). Consumptive uses, however, have reduced the
lake level by 11 feet, decreased its volume by 48%, increased lake salinity, and exposed approximately 50% of
the lake bed. This has increased wind-blown dust, impaired the use of marinas, and caused costly logistical
constraints for the mineral extraction industry. Shallow Bear River Bay and Farmington Bay have been
particularly impacted by desiccation, thus reducing wetland habitat and their use by waterfowl and shorebirds.
Additional water development in the basin, exacerbated by long-term climate variability, may further reduce
the lake’s level unless conservation efforts are increased for urban, industrial, and especially agricultural uses.
Utah needs to be aware of how water developments in the past, and those proposed for the future, affect the
lake and the important resources it provides, as well as human health and the economic stability.

Potential
Impacts
e Increased wind-blown dust
¢ Consumptive water use * Marina closures & dredging costs
* Water imports isti i i
: P ol « Reduced lake level * Logistic constraints on mineral
* Climate variability & shall ¢ harvest
-
change allower warer ¢ Reduced brine shrimp harvests

« Surface evaporation * Increased bare shoreline

* Reduced waterfow!| & shorebirds
* Increased salinity

* Reduction in recreation
¢ Reduction in wetland habitat

Lake Storage \ )

Figure 5. Summary of external forces influencing lake area and volume, and the effects of these

changes on Great Salt Lake’s natural resources.
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Footnotes

! Fornataro, E.A. 2008. The last untapped river in Utah: An argument against the development of the Bear River. J. Land,
Resources and Environmental Law 28: 141-162. http://epubs.utah.edu/index.php/jlrel/article/viewFile/103/93.

2 Although per-capita urban water use has decreased 18% in the watershed, overall urban use has increased from 131,400
acre-feet in the 1989-2000 period, to 138,800 acre-feet in the 2010-2014 period, a 5.6% increment (Utah Division of Water
Resources data).

3 Bioeconomics. 2012. Economic significance of the Great Salt Lake to the State of Utah. Prepared for the State of Utah
Great Salt Lake Advisory Council, Salt Lake City, Utah. 50 p.
http://www.gslcouncil.utah.gov/docs/2012/Jan/GSL_FINAL_REPORT-1-26-12.PDF, accessed 8 February 2014.

4 Mohammed, I.N., and Tarboton, D.G. 2012. An examination of the sensitivity of the Great Salt Lake to changes in inputs.
Water Resources Research 48. 1-17, DOI 10.1029/2012wr011908.

5 Rainfall for the Wasatch Front was derived from a composite rain gage available from the National Oceanographic and
Atmospheric Administration, http://w2.weather.gov/climate/xmacis.php?wfo=slc. Despite droughts and wet cycles,
there has been no significant (p = 0.52) long-term change from 1875-2015. Regression; inches = 24.67 - 0.00465 *year; p
=0.52, not significant.

% River flow in the upper tributaries was based on the 100-year continuous record from the Blacksmith Fork (USGS gage #
10113500), a tributary to the Logan River, and on tree-ring estimates of precipitation. In high precipitation years, trees
form thicker growth rings, such that the widths of these rings can be correlated with measured flows in rivers for the
years when flow data are available. The tree ring widths in years prior to documented river flows can then be used to
estimate flows in those years. Here, we’ve presented flow estimates for the Bear River at a site high in the watershed and
above any water diversion structures (USGS gage # 10011500; DeRose, R.J. et al. 2015, A millennium-length
reconstruction of Bear River stream flow, Utah. J. of Hydrology, doi: 10.1016/j.jhydrol.2015.01.014). Similar
reconstructions for the Weber River and Logan Rivers also demonstrate that there has been no long-term decrease in
river flow in upper basins (Bekker, M.F. et al. 2014. A 576-Year Weber River streamflow reconstruction from tree rings for
water resource risk assessment in the Wasatch Front, Utah. JAWRA J. of the Am. Wat. Resources Assoc. 50, 1338-1348.
doi:10.1111/jawr.12191, Allen, E.B. et al. 2013. A tree-ring based reconstruction of Logan River streamflow, northern
Utah. Water Resources Res. 49, 8579-8588. doi:10.1002/2013WR014273). Also see DeRose, R.J., et al. 2014. Tree-ring
reconstruction of the level of Great Salt Lake, USA. The Holocene 24, 805-813. doi:10.1177/0959683614530441. These
reconstructions document long-term droughts and wet cycles more severe than have been documented since 1847.
During these cycles the lake dried significantly more than our current situation and at other times expanded beyond even
the flooding seen in the mid-1980s.

The regression line in Figure 2A is a composite of the Blacksmith River flow and the tree-ring estimated flow for the Bear
River, and shows no significant trend (n = 267, p = 0.085). Similarly, there were no significant trends when the Blacksmith
River (n = 98, p = 0.349) and the Bear River tree-ring data (n = 165, p = 0.078) were analyzed separately.

7 Estimates of agricultural and reservoir consumptive use (called depletions by hydrologists) for the last 30 years were
computed from net crop evapotranspiration less winter carryover soil moisture storage on a per-acre basis. Reservoir
depletions were calculated as net average annual evaporation times 80% of maximum surface area (Hill, R. W. 1994.
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Consumptive use of irrigated crops in Utah, Utah Agr. Exp. Station. Res. Report #145; Water Rights web site,
http://www.waterrights.utah.gov/cgi-bin/damview.exe). Bear Lake and Utah Lake were not included in this calculation,
meaning that the actual evapotranspiration depletions may be somewhat larger than shown.

To obtain weather inputs for these calculations, 30-year (1971-2000) average weather data were extracted from PRISM
(http://www.prism.oregonstate.edu/). Municipal depletions were calculated by subtracting estimated impervious surface
runoff from municipal -calculated consumptive use. Evapotranspiration from impounded open water wetlands was
estimated using an area of 56,000 acres (Emerson, R. and T. Hooker. 2011. Utah wetland functional classification and
Landscape profile generation within Bear River Bay, Great Salt Lake, Utah. USGS, https://www.mendeley.com/profiles/
richard-emerson1/) multiplied by the net average annual evaporation (GridET program; author Clay Lewis, 2015,
https://github.com/claytonscottlewis/GridETURL). Mineral extraction depletion was calculated as 75% of lake
withdrawals (Compass Minerals, personal communication). Depletions due to evaporative losses in the basin were then
lowered by the amount of water imported from the Colorado River Basin.

The 39% decrease in river inflow to the lake is based on a 10-year average (2003-2012). This calculation accounts for the
importation of Colorado River water into the basin. The 39% decrease due to depletions is calculated based on total
depletions (corrected for Colorado R. imports) of 1,451,000 acre-feet (Utah DWR) and current river inflow to the lake of
2,303,000 acre-feet (Mohammed, I.N. and D.G. Tarboton, 2012).

The data use for the depletion estimates are a composite of early data analyses in the Utah Division of Water Resources,
and more detailed data after 1989. Depletions prior to 1970 were taken from estimates of R. Palmer and G.L. Whittaker
(Unpublished data, Utah Division of Water Resources). The post-1989 data shows short-term responses to droughts and
wet cycles, and is thus irregular. Consequently, the data in Figure 2B were smoothed with a 5-point running average.

Estimates of water depletions are imprecise. Consequently, additional analyses of the effects of depletions on the lake’s
level are warranted and may change the results somewhat. Nevertheless, the absence of a long-term trend in rainfall®
and mountain runoff over the past 170 years (Fig. 2A), when compared to the persistent decrease in lake level (Fig. 2C),
indicates that water use and consumption is having a major impact on the lake. Additional analyses of water use on the
lake are ongoing as part of the Great Salt Lake Integrated Water Resource Model being developed by the Division of
Forestry, Fire and State Lands.

8 Linear regression for red line in Fig. 2C, Lake Elevation (feet) = 4291.3 - 0.0469 * year; p <0.0001. Highly significant
decline.

% To estimate what the elevation of the lake would be if water was not used for consumption we added the difference
between past and current depletions as an annual input to the Great Salt Lake. The influence of lake area and salt
concentration on the evaporation rate from the lake surface were included in the model.

10 Bear River Development Project. Utah Division of Natural Resources. http://www.gslcouncil.utah.gov/docs/2014/
100ct/BearRiverPipelineProject.pdf.

11 The Utah Division of Water Resources estimates that the proposed diversion of 220,000 acre-feet of Bear Water will
result in a depletion of 85,670 acre-feet of water delivery to Great Salt Lake. They estimate that this will cause the lake to
decrease a mean of 8.5 inches and a maximum of 14 inches in elevation (C. Miller, personal communication). Assuming a
mean decrease of 8.5 inches from the current lake level (4193.1 feet), an additional 30 square miles of lake bed would be
exposed. If the decrease was 14 inches, 45 square miles would be exposed. The areas of exposure were calculated from
the bathymetric data provided by David Tarboton (Utah State Univ.) and does not include the areas in salt ponds.

12 Grineski, S.E., Staniswalis, J.G., Bulathsinhala, P., Peng, Y, Gill, T.E., 2011. Hospital admissions for asthma and acute
bronchitis in El Paso, Texas: do age, sex, and insurance status modify the effects of dust and low wind events? Environ.
Res. 111, 1148-55. DOI: 10.1016/j.envres.2100.06.007.

13 Giannadaki, D., Pozzer, A., Lelieveld, J. 2014. Modeled global effects of airborne desert dust on air quality and
premature mortality. Atmos. Chem. Phys. 14, 957-968. http://dx.DOI: 10.5194/acp-14-957-2014.

14 Griffin, D.W., Kellog, C.A., 2004. Dust storms and their impact on ocean and human health: dust in the earth’s
atmosphere. EcoHealth 1, 284-295. http://dx.DOl.org/10.1007/s10393-004-0120-8.

15 Dust events from Great Salt Lake and other areas in Utah are described in Hahnenberger, M., Nicoll, K., 2012.
Meteorological characteristics of dust storm events in the eastern Great Basin of Utah, U.S.A. Atmospheric Environment,
60, 601-612, ISSN 1352-2310, http://dx.doi.org/lO.1016/j.atr§osenv.2.




16 Larsen, R. 2014. The half-life of a lake. Virginia Quarterly Review 90, 24-25. DOI: 10.1353/vqr.2014.0068.

17 Great Basin Unified Air Pollution Control District (GBUAPCD). Owens Lake Dust Mitigation.
http://www.gbuapcd.org/owenslake.htm.

18 Smith, D. 2014. Settlement reached over dust control measures at Owens Lake. Los Angeles Daily News, November 14,
2014. http://www.dailynews.com/general-news/20141114/settlement-reached-over-dust-control-measures-at-owens-
lake.

19 Phillip Kiddoo, personal communication, Great Basin Unified Air Pollution Control District, Air Pollution Control Officer.
January 28, 2016.

20yUtah Division of Forestry, Fire & State Lands grant. http://www.ffsl.utah.gov/index.php/grant-programs/state-lands-
research-grants?showall=&start=1.

21 Dust increases sunlight absorption and hastens snowmelt, particularly in areas above tree line. See: Maurer, G.E. and
D.R. Bowling. 2015. Dust effects on snowpack melt and related ecosystem processes are secondary to those of forest
canopy structure and interannual snowpack variability. Ecohydrology 8:1005-1023.
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