The Logan, Blacksmith Fork and Little Bear rivers form a sub watershed of the Bear River. Its rich physical, ecological and cultural history forms the unique character of the landscape in the south of Cache Valley. However, the watershed faces growing pressures from population growth, climate change, agriculture and grazing, recreational use, as well as developments surrounding the watershed, such as the expansion of transportation networks along the Wasatch Front. In order to develop sound management strategies for the watershed, a comprehensive view of the landscape is needed that identifies key resources and pressures that drive change in the region. Although many research efforts within the watershed have addressed aspects of the river system and have led to a variety of management objectives, successful management of future growth and development in the watershed demands landscape level analysis and understanding of the biophysical and cultural systems that form the watershed in order to maintain the ecological health of the watershed and to protect the context of the region and community. The purpose of this study is to research and develop a process that identifies current and future land-use issues throughout the Logan and Little Bear River Watershed. The identification of these issues by various stakeholders will help to provide a framework for future policy decisions.

In pursuit of future policies, it is proposed to identify the most beneficial spatial patterns in the watershed based upon cultural, ecological, and economic considerations. The interactions and cause and effect relationships that exist between these three elements will identify common areas which support critical landscape services with respect to public health, safety and welfare. The study will also address the cultural and economic history in the region which will help resolve land-use and policy conflicts between future development and management activities. The identification and understanding of landscape resources and how and how those resources should clarify land planning and design decisions for stakeholders will be a major emphasis of this work. A landscape level analysis should provide an understanding of the biophysical as well as the economic and cultural influence, such as land ownership, water rights, and local cultural identity that shape the landscape. Previous studies have investigated many of these issues in the Little Bear and Bear River watersheds (e.g. Toth et al. 2005, 2007). These studies provide a historical context and base line for the evaluation of the contemporary issues facing the Logan-Little Bear watershed. The Purpose of the studio project is to identify and explore present opportunities and challenges facing the watershed. Moreover, the research can help coordinate diverse research efforts and knowledge about the watershed in order build an accurate picture of the current ecological status of the river basin and provide a platform to inform decision makers. Such research and interdisciplinary study of the watershed can support county and local government as well as the Logan River Task Force, whose aim is ‘to make the Logan River system a showcase of ecologically viable, socially beneficial river restoration’.

COURSE OBJECTIVES:

The objectives of the study are to develop a landscape-level approach for the analysis of physical, ecological, and cultural landscape components in the Logan / Little Bear Watershed. A contextual template will be established in order to limit the spatial scope of research. The study will take into account, but not be limited to, those issues noted above. Broadly, the objectives are:
Logan/Little Bear Watershed

- Create a GIS database describing various biophysical and socio-demographic characteristics of the study area, including the basic land use infrastructure of the region. This database will consist of existing sources of data available from Utah AGRC and other geo-information sources as well as pertinent research findings;
- Develop objective definitions and criteria by which regionally-significant landscape elements can be identified and evaluated within the study area, and its regional context;
- Assess likely future growth and land use patterns in relation to landscape and natural resources, and prioritize areas to be considered for management and/or protection;
- Develop strategies to protect regionally-significant “critical lands” considering attributes like public health, welfare and safety; connectivity between local and regional patterns and biodiversity;
- Distribute relevant material and study conclusions to relevant stakeholders and policy makers.

The merit of the study will serve to provide stakeholders and policy makers in the watershed with a background for future environmental and development policies within the region. The study has the potential for a broader contribution to future planning in the region by providing relevant data, methodologies and models for conducting additional evaluations on the impacts and benefits of growth in the study area over the next five to ten years.

LEARNING OBJECTIVES
The studio will emphasize three major goals for the student.

1. Learning to analyze and critically evaluate ideas, arguments, and points of view.
Students should achieve this goal by examining the concepts of “methodology” and “analysis” in order to know how to approach, research and understand a project and region of this scale and complexity. Furthermore, the studio contains more analytical and technical procedures of large scale landscape planning and design. The first of these is a method of problem examination evidenced by the various phases of work. Each phase in turn has sub-processes of analysis to be executed in the studio. These will be supplemented by guest lectures, readings, case studies, and seminars. The technical aspects are integrated into the analytical so as not to distort their use or place in problem solving.

2. Learning to apply course material (to improve thinking, problem solving, and decisions)
Students achieve this learning objective by developing an understanding of the interrelationships and interdependencies between the physical, biological and cultural components of the region and how they contribute to key spatial patterns and consequently, the fitness of future land use activities to those patterns.

3. Acquiring skills in working with others as a member of a team.
Students should develop recognition and acknowledgment of the strengths and weaknesses of a range of disciplines in relationship to such a complex project while at the same time being cognizant of the fact that their area of specialization is one which is critical and essential to the resolution of landscape planning issues at this scale. The studio project shall also engage faculty, students, and stakeholders in a comprehensive transdisciplinary learning/research environment to address natural resource science and management issues

LEARNING ENVIRONMENT

The studio approach to learning is perceived by many educators as one of the most effective, dynamic and productive learning environments in education. The primary academic objective is to provide a heuristic environment so that the student can discover and develop knowledge, skills, and intellectual
strategies for the resolution of a given planning issue. The studio should act as a critical link between teaching and research in that it should encourage creative problem solving, transdisciplinary collaboration, critical thinking, a tolerance for ambiguity, and experiential learning.

The intellectual organization of the studio is to build an environment for the student which fosters their active participation and sense of responsibility to the studio objectives. The teaching approach is to have the student be self-reliant in taking responsibility for the various portions of work with appropriate but minimal guidance and support (heuristic).

The intellectual activities which dominate the studio atmosphere are research (problem definition), analysis (understanding the problem), synthesis (providing alternative solutions to the problem), and evaluation (the formulation of criteria for assessment). A range of creative problem solving techniques are applied to the activity ranging from brainstorming, delphi, interactive matrices, modeling, morphological analysis, and synectics.

The methods of instruction cover a broad range of learning strategies which emphasize the need for an interdisciplinary approach to the resolution of environmental problems. A typical studio will include formal lectures, seminars, recitations, critiques, visiting lecturers from related disciplines, field trips, and independent research. Four major instructional techniques integrate these more traditional learning strategies into a comprehensive learning environment. The predominant themes include the case study method, simulation techniques, apprenticeship, and the team approach. These procedures help the student to analyze and clarify the problem, assemble the data that bears upon it and to design and document alternative strategies for solution, including the identification of risks and probable outcomes of each alternative. A meaningful, learning atmosphere is created by this organization since it allows each student to confront their own problems and encourages openness of response, allowing them to acknowledge prejudices and other mental blocks to learning which clears the way for more productive and cognitive inquiry.

Additional Studio Activities

On Tuesday from 1:30-3:00 p.m., a series of lectures and/or visitor presentations may take place. The remaining time, and class time and Thursday (1:30-4:20), should be reserved for studio research and production activities. The class should also be prepared for guest lecturers on Wednesdays from 10:30-11:30 a.m. Any changes to this schedule will be announced in class. In addition, you may also be required to attend special lectures and/or workshops which develop during the semester on or off campus. Please note a field trip to the study area on the 12th and 19th of September. These are noted on the calendar (please seek an excused absence from appropriate faculty).

DOCUMENTATION AND DRAFT REPORT

All papers and reports are to be as brief as possible, commensurate with adequate communication and explanation, and written in clear and grammatical English. They should be outlined carefully using a simple hierarchy of letters and numbers, decimals or other system for emphasis of ideas; and typed on one side of 8 ½" x 11" paper. We will use a standard journal entry which will be announced in class. Proofread your paper before you hand it in! Keep copies of all papers. Special attention must be given to "credits" for quotations and ideas from whatever source.
STUDIO SEQUENCE

PROCEDURES AND PHASES: (see Studio Calendar, also reference Summary, pages 8, 9 & 10)

The study will contain eight major phases of work. Although these will be expanded on in greater detail in class, they are:

1. Pre-analysis/problem formulation/case studies/site visit
2. Summary of surveys and the identification of issues and setting of priorities
3. Definition of data, inventory and file
4. Full scale analysis - Function & Structure (linkages and new data)
5. Evaluation Criteria, Land Use & Environmental Assessment Models
6. Concept development-Future Scenarios and regionally-significant “critical lands”
7. Concept evaluation, mitigation strategies and new policies formulated
8. Documentation and draft interim report

Each major phase of work will have a number of sub-phases. The activities and objectives of each sub-phase will be brought forward at the appropriate time in studio. However, a brief outline of each at this time would be helpful.

PRE-ANALYSIS

Introduction to the Study Area, Surveys, Site Visits, Methodology, and Case Studies

The first five weeks of the study will contain four basic areas of work. The first activity will consist in reviewing a number of past planning case studies in order to determine how they may assist or contribute to our understanding of the project. The methodology, issues, data, modeling techniques, and conclusions of each case study will be documented and presented in class in order to identify appropriate precedents for future use and reference.

The second will consist of on the ground site visits in order to come forth with a preliminary introduction and assessment of the study region. The intent of the visits is to help the study team identify major planning, landscape, and cultural issues to be addressed with respect to future development. Individual perceptions will be presented in Project Opinion Papers and then summarized as a final team document. Study boundaries will be revisited at this time to provide the context for the work.

The third area of activity will consist of a review and summary of past land use and policy issues in the region. This summary will include a number of planning priorities and policies as defined or suggested by the area stakeholders.

The fourth area will consist of researching each of the major planning/design issues identified from the site visits in order to briefly document their physical and spatial characteristics. This work will help to establish a preliminary set of data which will be utilized in future modeling activities.
DATA INVENTORY/BASE MAP PREPARATION

Data search, Acquisition, and GIS Mapping

Based upon the results of the pre-analysis, this portion of the study will consist of the tedious, but necessary task of data acquisition and mapping. Questions relating to the type, scale, and mapping compatibility of data will also be addressed in the studio at this time.

FULL SCALE ANALYSIS - FUNCTION AND STRUCTURE:

This phase of work will contain two major areas of investigation. The first will be the research and analysis of the biophysical phenomena which are responsible for a description and understanding of the natural setting of the study area. Briefly, this will include the geology, soils, water, climate, vegetation, and wildlife of the region. The second area of research and analysis will cover those cultural phenomena which utilize and change in varying degrees those systems or processes in the biophysical setting. This work will address a range of land use activities (stressors) such as agriculture, housing, tourism, recreation and energy development and how they impact various landscape-level patterns and corridors in the future. Issues tied to the capital infrastructure servicing those uses will also be examined at this time. Each of these two analyses will result in the mapping and documentation of the function and structure of the phenomena and its interaction and linkages with other components in both areas of investigation.

This work will culminate in a preliminary outline and presentation to stakeholders for review and feedback.

EVALUATION CRITERIA, ACTIVITY & ENVIRONMENTAL ASSESSMENT MODELS

Preliminary Activity Allocation Models - A.A.M./ Land Use
During this phase of the study there will be several activities taking place. The first will consist of research into those land uses and other issues noted above in Full Scale Analysis – Function and Structure. This will be done in order to refine their functional and spatial characteristics which will then be represented in diagrammatic models. If time permits each model will be printed out and verified in the field for its accuracy. Second and third iterations may be necessary in order to fine tune the objectives of each model. These models will act as the basis for the construction of future scenarios and evaluation models.

Preliminary Environmental Evaluation Models - E.E.M.
The format for the second activity will closely follow that of the first. The primary difference is that the research in this area will cover the identification, description, and construction of those models which are considered important to the continued functional operation of the biophysical base while at the same time allowing new uses to occur (sustainability). These models will also act as part of the basis for future land use priorities. Mitigation strategies, if appropriate, will also be tied to the performance of these models. In like manner, this work will take into account those issues noted above in Full Scale Analysis – Function and Structure. This work will culminate in a preliminary outline and be presented to stakeholders for review and feedback.

Based upon comments from stakeholders, a set of objectives and criteria will be established for several alternative futures programs including a description of various objectives. The research, analysis and definition of each program will be documented as a specific model which can be converted into spatial display. Individual programs and/or their combinations will be printed for field verification. This work will also culminate in a preliminary outline and be presented to stakeholders for review, feedback, and revisions as necessary.
Spring Semester – A Brief Outline

CONCEPT DEVELOPMENT – FUTURE LAND USES

Following from the program and objectives for the study area set out in the fall studio, the study group will provide distinct and well articulated strategies for the resolution of future growth scenarios. These physical plans will be submitted for evaluation, first with respect to their accommodation of needs and projections, and second, with regard to:

a. Resolution of objectives and stakeholder priorities
 Feasibility of conversions to support consolidation of parcels.
 Feasibility of strategies and policies
 Feasibility of implementation
b. Implications of conversion strategies and policies
 New issue created
 New policy tools identified

CONCEPT EVALUATION/DOCUMENTATION

In the final phase of work a documentation of the performance of proposed scenarios will be made utilizing the full range of activity allocation and environmental evaluation models. This documentation will include broad recommendations for mitigation strategies and policies to overcome identified shortcomings. There are three important aspects to be considered at this time.

1. New strategies and/or alternatives defined & developed
2. New tools of implementation defined & developed
3. New land use activities and evaluation models over and above those identified in the analysis phase will also be documented at this time for future consideration.

Documentation and production of final report (Fall and Spring Semesters)

Presentation of all phases to various stakeholders within the region

Disability Resource Center Statement
Students with Americans with Disabilities Act (ADA)-documented physical, sensory, emotional or medical impairments may be eligible for reasonable accommodations. Veterans may also be eligible for services. All accommodations are coordinated through the Disability Resource Center (DRC) in Room 101 of the University Inn, (435)797-2444. Please contact the DRC as early in the semester as possible. Alternate format materials (Braille, large print, digital, or audio) are available with advance notice.

Inclusion Statement
No student is permitted to create a threatening, intimidating, or harassing environment in this course. Classroom civility is a part of the Student Code, and infractions will be pursued through the Student Conduct Coordinator. This course will be conducted in a safe and tolerant environment, and any person who detracts from that environment will be instructed to leave without the ability to make up coursework.
Course Faculty:

Assistant Professor Barty Warren-Kretzschmar, Ph.D., MLA
Office phone: 797-4293
Email: barty.warren@usu.edu
Office hours: by appointment on Wednesday and Thursday from 8:30-9:30, QNR 353-A

Professor Richard E. Toth (Emeritus)
Office phone: 797-0694
Email: richard.toth@usu.edu

Teaching Assistant: Carly Klein

Faculty Studio Associates:

<table>
<thead>
<tr>
<th>Name</th>
<th>Office Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fee Busby</td>
<td>797-2319</td>
<td>fee.busby@usu.edu</td>
</tr>
<tr>
<td>Rob Gillies</td>
<td>797-2190</td>
<td>robert.gillies@usu.edu</td>
</tr>
<tr>
<td>Karin Kettenring</td>
<td>797-2546,</td>
<td>karin.kettenring@usu.edu</td>
</tr>
<tr>
<td>Nancy Mesner</td>
<td>797-7541</td>
<td>nancy.mesner@usu.edu</td>
</tr>
<tr>
<td>Johan Du Toit</td>
<td>797-7541</td>
<td>johan.dutoit@usu.edu</td>
</tr>
<tr>
<td>Terry Messmer</td>
<td>797-3975</td>
<td>terry.messmer@usu.edu</td>
</tr>
<tr>
<td>Chris Monz</td>
<td>797-2773</td>
<td>chris.monz@usu.edu</td>
</tr>
<tr>
<td>Phaedra Budy</td>
<td>797-7564</td>
<td>Phaedra.Budy@usu.edu</td>
</tr>
<tr>
<td>Frank Howe</td>
<td></td>
<td>frankhowe@utah.gov</td>
</tr>
<tr>
<td>Joe Wheaton</td>
<td></td>
<td>joc.wheaton@usu.edu</td>
</tr>
</tbody>
</table>
Summary of learning objectives and assessment

The following outline highlights the various goals and objectives outlined in the syllabus.

1. To introduce the student to various methodologies for the pre-analysis of a project including the preparation of a preliminary time frame/budget...
 Teaching methods:
 - Field trip
 - Meetings with stakeholders
 - Identification of issues (site, program, context)
 Assessment:
 - Project opinion paper
 - Mapping and written documentation of planning issues
 - Documentation of stakeholder objectives
 - Recommended base map and preliminary data needs

2. Review of landscape planning methodologies and analytical techniques
 Objectives:
 - Learn how to research, analyze and summarize biophysical and cultural components
 - Review of major landscape components and key terms
 Assessment:
 - Document and outline individual approaches (methodology)

3. Development of survey material for inclusion into area-wide stakeholder survey.
 Objectives:
 - Review past surveys
 - Synthesize survey material
 - Establish planning priorities
 Assessment:
 - Formulate and distribute area survey
 - Summary of survey material
 - Definition of planning priorities

4. Review of past and current planning case studies
 Objectives:
 - Research and analysis of past and present “key” studies and approaches
 - To describe contributions to existing project
 - To outline issues, data, and modeling techniques.
 Assessment:
 - Documentation of each case study
 - Presentation of each case study for class discussion
 - Comparison of case studies (strengths and weaknesses) via interactive matrices
 - Benefits to current or projected project

5. Introduction to procedures for data identification, files, and search
 Objectives:
 - Outline of preliminary planning issues
 - Definition of data descriptions
 - Prioritization of data needs
 Assessment:
 - Development of data list via interactive matrix
 - Identification of composite data plus data search
6. Research into the biophysical and cultural setting of the area in order to define their function and structure.
 Objectives:
 Readings and research into the biophysical components of the region.
 Readings and research into the cultural components of the region.
 Assessment:
 Mapping and documentation of the pattern and processes inherent in both biophysical and cultural components.
 Definition of limiting and trigger factors resident in each component
 Description of interdependencies and linkages between components

7. As a consequence of the survey and landscape description, a set of evaluation models are to be developed.
 Objectives:
 To establish a set of biophysical, cultural and spatial models for future use in evaluation of land use alternatives (futures).
 To document and test spatial validity of models
 Preparation of activity allocation models
 Preparation of environmental models
 Preparation of spatial combinations or congruency
 Assessment:
 Documentation of models and plan output
 Documentation and description of models including performance levels
 Field check models for spatial/data accuracy as per objectives

8. As a result of the survey and stakeholder meetings, the study team will articulate strategies for the resolution of future development scenarios.
 Objectives:
 Resolution and prioritization of stakeholder issues
 Brainstorming of strategies and future scenarios
 Preliminary identification of implementation strategies
 Assessment:
 Documentation and development of future scenarios
 Testing of scenarios for spatial and data accuracy

9. The final phase of work will be the testing and evaluation of the scenarios against the activity and evaluation models developed earlier including their compatibility with spatial alternatives.
 Objectives:
 The comparison of future scenarios to determine *best* performance for support of spatial alternatives
 To define new strategies and implementation tools if needed
 Assessment:
 Documentation of futures evaluation in response to open space plans
 Documentation of new strategies, policies, and mitigation recommendations

10. The study will conclude with the preparation of a final report and presentation of all material to the various stakeholders.
 Objectives:
 Compilation of all written and graphic work representing all phases of the study
 Design and layout of posters summarizing the study
 Design a PowerPoint presentation for stakeholder and public meetings
 Assessment:
 Production of final report with appropriate CDs
 Production of final posters
 Presentation of study to major stakeholders
EVALUATION:

- Project Opinion Paper 10%
- Survey-summary 5%
- Case Studies 15%
- Function & Structure Papers 20%
- Data Analysis, Prioritization, and Acquisition 5%
- Activity Allocation Models – Documentation + Display 15%
- Environmental Evaluation Models - Documentation + Display 15%
- Definition of landscape patterns – Documentation + Display 15%

Spring

- Assess Landscape Patterns of Land Use and Critical Landscapes 25%
- Review and Response 5%
- Final Resolution/Alternative Futures and Assessment Models 15%
- Concept Evaluation and Documentation, Conflicts or Compatible Strengths and Weaknesses 35%
- Documentation and Production of Final Report 20%
WEEK

READING

13. **Forum**

Logan / Little Bear Watershed – Tentative schedule

<table>
<thead>
<tr>
<th>Sun</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUG 24</td>
<td>25</td>
<td>26 Studio</td>
<td>27 Seminar</td>
<td>28 Studio</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>Week 1</td>
<td></td>
<td>Introduction and Reading assignment</td>
<td>Discuss Readings</td>
<td>Assignment, Project Opinion Paper</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEPTEMBER

<table>
<thead>
<tr>
<th>31</th>
<th>SEPT. 1 Labor Day</th>
<th>2 Studio</th>
<th>3 Seminar</th>
<th>4 Studio</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td></td>
<td>FIELD TRIP</td>
<td></td>
<td>FIELD TRIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9 Studio</td>
<td>10 Seminar</td>
<td>11 Studio</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Week 3</td>
<td></td>
<td>Assignment: Case Study Process and Procedure</td>
<td>Discuss Readings</td>
<td>Guest: Frank Howe*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16 Studio</td>
<td>17 Seminar</td>
<td>18 Studio</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Week 4</td>
<td></td>
<td>Guest: Ron Vance / Dave Hatch</td>
<td>Discuss Readings</td>
<td>Methodology Approach*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23 Studio</td>
<td>24 Seminar</td>
<td>25 Studio</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>Week 5</td>
<td></td>
<td>Research</td>
<td>Discuss Readings</td>
<td>Guest: J. Wheaton</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OCTOBER

<table>
<thead>
<tr>
<th>28</th>
<th>29</th>
<th>30 Studio</th>
<th>OCT. 1 Seminar</th>
<th>2 Studio</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 6</td>
<td></td>
<td>DUE: Project Opinion Paper</td>
<td>J Guest: N. Mesner</td>
<td>Identify Issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7 Studio</td>
<td>8 Seminar</td>
<td>9 Studio</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Week 7</td>
<td></td>
<td>DUE: Case study</td>
<td>Discuss Readings</td>
<td>Firm Issues/relevant data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13 Columbus Day</td>
<td>14 CS / Forum</td>
<td>15 Seminar</td>
<td>16 Friday classes</td>
<td>17 Fall break</td>
<td>18</td>
</tr>
<tr>
<td>Week 8</td>
<td></td>
<td>Research</td>
<td>No class</td>
<td>No class</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Date not yet confirmed
OCTOBER (Continued)

<table>
<thead>
<tr>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 9</td>
<td></td>
<td>Studio</td>
<td>Seminar</td>
<td>Studio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intro: Function / Structure</td>
<td>Guest: P. Budy*</td>
<td></td>
<td>Discuss Readings Function/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>Nov. 1</td>
</tr>
<tr>
<td>Studio</td>
<td>Seminar</td>
<td>Studio</td>
<td></td>
<td></td>
<td></td>
<td>Halloween</td>
</tr>
<tr>
<td>Week 10</td>
<td></td>
<td>F/S Intro: Allocation/ Evaluation Models</td>
<td>Guest: C. Monz*</td>
<td></td>
<td>Discuss Readings</td>
<td>A/E and S/F</td>
</tr>
</tbody>
</table>

NOVEMBER

<table>
<thead>
<tr>
<th>NOV. 2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 11</td>
<td>Studio</td>
<td>Seminar</td>
<td>Studio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S/F and A/E research</td>
<td>Guest: Rob Davies</td>
<td></td>
<td>S/F and A/E Research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Week 12</td>
<td>Studio</td>
<td>Seminar</td>
<td>Studio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F/S Outline</td>
<td></td>
<td></td>
<td>DUE: Structure and Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Week 13</td>
<td>Studio</td>
<td>Seminar</td>
<td>Studio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Review A/E models</td>
<td>Discuss Readings</td>
<td></td>
<td>DUE: Allocation/ Evaluation models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>Week 14</td>
<td>Studio</td>
<td>No class</td>
<td></td>
<td>Thanksgiv-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fall break</td>
<td></td>
<td>ing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DECEMBER

<table>
<thead>
<tr>
<th>30</th>
<th>DEC. 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 15</td>
<td></td>
<td>Presentation Preparation</td>
<td>Presentation Preparation</td>
<td>Faculty Review</td>
<td>Last Class</td>
<td></td>
</tr>
<tr>
<td>No test week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Stakeholder Presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXAM WEEK
Logan River task force pushes onward

By Lis Stewart
staff writer

As Utah State University professors head into the new school year, a handful of them will be thinking about another topic besides classes and research: the Logan River.

A group of about 20 professors and government officials formed this summer as the Logan River Task Force, dedicated to looking at ways to restore the river. The first meeting was July 31, and committee chair Frank Howe, who represents Bridgerland Audubon Society, said he is optimistic.

“We're feeling pretty positive about it,” he said. University scientists expressed dismay earlier this year when the public saw the effects of the city's flood mitigation project. Cache County received a grant through the Natural Resources Conservation Service for bank stabilization, revegetation and other methods to reduce chance of flood damage in the future.

“We're not going to let the city off the hook entirely,” Howe said of the task force's goals. “I think that message came through. I think what we want is to get past those mistakes and learn from them, and make all the future work better.”

The university's professors will be more heavily involved this year with a bioregional planning class, which will have students research and create a long-term plan for local river restoration, Howe said. It is a studio class that gives students hands-on experience.

The task force intends to put together a long-term plan of its own for the river and its tributaries, and the students' work will help, Howe said.

“That would be a really excellent jump-start for the task force to get together,” he said.

Another goal for the task force in relation to the university is to make the Logan River an outdoor classroom, Howe said. While teachers already use the river for teaching and research, the task force wants to communicate an overall objective that the river can be used to teach, he said.

The task force will also make short-term recommendations on stream stabilization and restoration, Howe said. Some of this will have to do with what the city did during the NRCS project, while the group will offer critiques and suggestions on how to improve the river.

Logan received a $600,000 grant from the Utah Division of Water Quality for the task force to use and will be providing a $400,000 match.

Eventually, they want to move beyond the Logan River, to its tributaries and then the Blacksmith Fork River, Howe added.

Representatives from all the departments in the S.J. and Jessie E. Quinney College of Natural Resources are on the task force, in addition to the Division of Water Quality, Division of Environmental Quality, Trout Unlimited, Logan and Cache County, Howe said.

“I do think it's a good opportunity for the university to work on a local project with the city and county,” Howe said.

lstewart@hjnews.com
Twitter: @CarpetComm