Certified Ecological Restoration Practitioner-in-Training (CERPIT)

Become a CERPIT and Begin Your Career in Restoration

The Society for Ecological Restoration (SER)’s Certified Ecological Restoration Practitioner-in-Training (CERPIT) program encourages a high professional standard for those who are designing, implementing, overseeing, and monitoring restoration projects throughout the world.

Certification as a CERPIT is ideal for new graduates of restoration programs and emerging professionals who are in the process of accumulating practical restoration experience. CERPIT is considered a preliminary step for those who have the educational experience (but not the full-time work experience) necessary to become certified as a Certified Ecological Restoration Practitioner (CERP).

Why Become a CERPIT?

By becoming a CERPIT, you can demonstrate to potential employers, clients, and collaborators that you have the necessary educational background to work in the field of ecological restoration.

You will also receive a variety of professional and networking benefits, including a personalized listing in SER’s CERP Directory, access to a global community of certified practitioners, and the ability to use the CERPIT acronym on your resume, LinkedIn profile, business cards, reports, and project proposals.

What Is Required to Become a CERPIT?

APPLICATION REQUIREMENTS

- **Knowledge Base:** A combination of academic credentials (or equivalence) in Biological Science, Physical Science, Resource Management and Conservation, Quantitative Science, and Ecological Restoration categories (provide transcripts).
- **References:** Three references to demonstrate the applicant is held in high esteem by mentors and/or colleagues
- **Foundations of the Profession:** Knowledge and understanding of the fundamental concepts of ecological restoration through SER’s e-learning course
- **Policy Compliance:** Agreement to adhere to the SER Code of Ethics and the SER Disciplinary Policy.
- **Application Fee:** US$100 for SER members, US$200 for non-members

* Equity rates are available for individuals who could not otherwise afford to apply to the CERPIT program. Discounts are also available for SER business, lifetime, and restorer members.

Learn More About the CERPIT Program

To learn more about program requirements, fees, and the application process, please visit SER’s website at ser.org/CERPITApplications
Utah State University

CERPIT Alignment
B.S., Management and Restoration of Aquatic Ecosystems
Biological Science (15 Credits); At Least 9 Credits in Ecology

Through the core degree courses listed below, students will automatically accumulate 12 credits in the larger Biological Science category with 6 credits towards the 9-credit ecology subRequirement:

- BIOL 1610 - Biology I (3 credits)
- BIOL 1620 - Biology II (3 credits)
- **WATS 2220 - General Ecology (3 credits)
- **WATS 4500 - Limnology: Ecology of Inland Waters (3 credits)

To fulfill the remaining 3 credits in both the Biological Science category and ecology subrequirement, it is recommended that students take one of the courses below that will meet both requirements (such as those listed below):

- **WATS 3100 - Fish Diversity and Conservation (3 credits)
- **WATS 5310 - Ecology and Restoration of Wetland and Riparian Plants (3 credits)
- **WATS 5560 - Applied Avian Ecology (3 credits)

**Indicates that course counts towards the 9-credit subrequirement for this category

Physical Science (15 Credits); At Least 6 Credits in Soils, Hydrology, and/or Climate Science

Through the core degree courses listed below, students will automatically accumulate 31 credits in the larger Physical Science category and 21 credits in the 6-credit Soils, Hydrology, and/or Climate Science subcategory (thereby satisfying both categories without additional electives):

- CHEM 1210 - Principles of Chemistry I (4 credits)
- CHEM 1215 - Chemical Principles Laboratory (1 credit)
- CHEM 1220 - Principles of Chemistry II (4 credits)
- CHEM 1225 - Chemical Principles Laboratory II (1 credit)
- **WATS 3600 - Geomorphology (4 credits)
- **WATS 3700 - Fundamentals of Watershed Science (3 credits)
- **WATS 3910 - Climatology and Hydrology for Western Watersheds (3 credits)
- **WATS 4490 - Small Watershed Hydrology (4 credits)
- **WATS 5150 - Fluvial Geomorphology (3 credits)

and either:

- **GEO 1110 - Physical Geology (3 credits)
- **GEO 1115 - Physical Geology Laboratory (1 credit)
or both of the following courses:

- **GEOG 1000 - Physical Geography (3 credits)
- **GEOG 1005 - Physical Geography Lab (1 credit)

**Indicates that course counts towards the 6-credit sub-requirement for this category

3

Resource Management and Conservation (12 Credits); At Least 3 Credits in Ecological Dimensions and 3 Credits in Human Dimensions

Through the core degree courses listed below, students will accumulate 10 credits in this category and fulfill either the Ecological Dimensions and Human Dimensions sub-requirements, depending on whether students complete ENVS 3010 or WATS 4600:

- WILD / ENVS / WATS 2000 - Natural Resources Professional Orientation (1 credit)
- ^^APEC 3012 - Introduction to Natural Resource and Regional Economics (3 credits)
- ^^ENVS 4000 - Human Dimensions of Natural Resource Management (3 credits)

and either:

- ^^ENVS 3010 - Fundamentals of Natural Resource and Environmental Policy (3 credits)

or the following course:

- **WATS 4600 - Environmental Water Management (3 credits)

If students complete ENVS 3010 instead of WATS 4600, they will need to take a 3-credit course that fulfills the Ecological Dimensions sub-requirement:

- **WATS 4650 - Principles in Fishery Management (3 credits)
- **WILD 4600 - Conservation Biology (3 credits)
- **WILD 4880 - Genetics in Conservation and Management (3 credits)

If students complete WATS 4600 instead of ENVS 3010, they will have satisfied both the Ecological Dimensions and Human Dimensions sub-requirements and need to accumulate another 2 credits in the larger Resource Management and Conservation category (using any of the courses listed above, or those listed below):
• ^^CEE / PUBH 3610 - Environmental Management (3 credits)
• ^^ENVS 4020 - Foundations of Environmental Studies (3 credits)
• ^^ENVS 4110 - Human Dimensions of Wildlife Management (3 credits)
• ^^ENVS 6320 - Water Law and Policy in the United States (3 credits)
• ^^ENVS 4700 - Communicating Sustainability (3 credits)
• ^^GEOG 4400 - Natural Hazards and Society (3 credits)
• ^^SOC 4620 - Sociology of the Environment and Natural Resources (3 credits)
• ^^SOC 4640 - Managing Community Conflict (3 credits)

**Indicates that course counts towards the 3-credit Ecological Dimensions sub-requirement

^^Indicates that course counts towards the 3-credit Human Dimensions sub-requirement

Quantitative Science (9 Credits); At Least 6 Credits in Inventory, Monitoring, and/or Assessment

Through the core degree courses listed below, students will accumulate 22 credits in this category and fulfill the 6-credit sub-requirement in Inventory, Monitoring, and/or Assessment of the Quantitative Science category:

- **GEOG / WILD 2800 - Introduction to Geographic Information Sciences (4 credits)
- MATH 1050 - College Algebra (3 credits)
- MATH 1100 - Calculus Techniques (3 credits)
- MATH 1210 - Calculus I (4 credits)
- **STAT 3000 - Statistics for Scientists (3 credits)
- **WATS 3050 - Data Management for Natural Resources - Cleaning and Shaping Data (1 credit)
- **WATS 3060 - Data Management for Natural Resources - Data Display and Analysis (1 credit)
- **WATS 4930 - Advanced GIS and Spatial Analysis (3 credits)

**Indicates that course counts towards the 6-credit sub-requirement for this category

Ecological Restoration (6 Credits)

Through core degree courses, students will fulfill the 6 required credits for this category with the following courses:
- **WATS 5300 - Principles of Aquatic Ecosystem Restoration (2 credits)**
- **WATS 5340 - Management and Restoration of Aquatic Ecosystems Capstone I (2 credits)**
- **WATS 5350 - Management and Restoration of Aquatic Ecosystems Capstone II (2 credits)**

Summary Table

| Biological Science (15 Credits); At Least 9 Credits in Ecology | Required (or part of degree core requirements):
| BiOL 1610; BIOL 1620; WATS 2220; WATS 4500 |
| Choose ONE relevant elective from:
| WATS 3100; WATS 5310; WATS 5560 |

| Physical Science (15 Credits); At Least 6 Credits in Soils, Hydrology, and/or Climate Science | Required (or part of degree core requirements):
| CHEM 1210; CHEM 1215; CHEM 1220; CHEM 1225; WATS 3600; WATS 3700; WATS 3910; WATS 4490; WATS 5150; GEO 1110 & GEO 1115 (OR GEOG 1000 & GEOG 1005) |

| Resource Management and Conservation (12 Credits); At Least 3 Credits in Ecological Dimensions and 3 Credits in Human Dimensions | Required (or part of degree core requirements):
| WILD / ENVS / WATS 2000; APEC 3012; ENVS 4000; either ENVS 3010 OR WATS 4600 |
| If ENVS 3010 taken, Choose ONE from:
| WATS 4650, WILD 4600; WILD 4880 |
| If WATS 4600 taken, choose ONE from:
| CEE / PUBH 3610; ENVS 4020; ENVS 4110; ENVS 6320; ENVS 4700; GEOG 4400; SOC 4620 |

| Quantitative Science (9 Credits); At Least 6 Credits in Inventory, Monitoring, and/or Assessment | Required (or part of degree core requirements):
| **GEOG / WILD 2800; MATH 1050; MATH 1100; MATH 1210; STAT 3000; WATS 3050; WATS 3060; WATS 4930 |

| Ecological Restoration (6 Credits) | Required (or part of degree core requirements):
| WATS 5300; WATS 5340; WATS 5350 |